## Continuous Space Language Models using Restricted Boltzmann Machines

Jan Niehues and Alex Waibel

## Institute for Anthropomatics



## Motivation

N-gram based language models

- Make use of large corpora
- Can be trained efficiently

Domain Adaptation

- Language models trained on small corpora are needed
- Language model has to back-off to smaller contexts
- Continuous space language models always use same context size
- Longer training time not as problematic
- Aim: Application during decoding


## Related work

First approaches of neural network language models using word categories in the 90s (Nakamura et al.,1990)

CSLM for speech recognition (Bengio et al., 2003, Schwenk et al., 2002)
SOUL Language model by Le et al., 2011
RBM-based language model (Mnih and Hinton, 2007)

## Overview

Restricted Boltzmann Machine
RBMs for Language Model

- Calculating probabilities efficiently


## Evaluation

- German-English
- English-French

Conclusion

## Restricted Boltzmann Machine

Layout

- 2 layer neuronal net
- Binary units
- Weighted connections between the layers
- No connections within the layer



## Restricted Boltzmann Machine

Layout

Probability

- Probability defined by the energy

$$
\begin{align*}
p(v, h) & =\frac{1}{Z} e^{-E(v, h)}  \tag{1}\\
E(v, h) & =-\sum_{i \in v i s i b l e} a_{i} v_{i}-\sum_{j \in \text { hidden }} b_{j} h_{j}  \tag{2}\\
& -\sum_{i, j} v_{i} h_{j} w_{i j}
\end{align*}
$$



- Problem: Hidden state needs to be known


## Restricted Boltzmann Machine

Layout
Probability

- Probability defined by the energy

$$
\begin{align*}
p(v, h) & =\frac{1}{Z} e^{-E(v, h)}  \tag{1}\\
E(v, h) & =-\sum_{i \in \text { visible }} a_{i} v_{i}-\sum_{j \in \text { hidden }} b_{j} h_{j}  \tag{2}\\
& -\sum_{i, j} v_{i} h_{j} w_{i j}
\end{align*}
$$



- Problem: Hidden state needs to be known


## Restricted Boltzmann Machine

Layout

Probability

- Probability defined by the energy
- Probability using free energy

$$
\begin{align*}
p(v) & =\frac{1}{Z} e^{-F(v)}  \tag{3}\\
F(v) & =-\sum_{i \in \text { visible }} a_{i} v_{i} \\
& -\sum_{j \in h i d d e n} \log \left(1+e^{x_{j}}\right) \\
x_{j} & =b_{j}+\sum_{i \in \text { visible }} v_{i} w_{i j} \tag{5}
\end{align*}
$$



## Restricted Boltzmann Machine

Layout

Probability

## Training

- Contrastive Divergence
- Increase probability of seen training example



## RBMs for Language modeling

Layout

- N input blocks
- Each of the block has V units
- H hidden units
- $\mathrm{N}^{*} \mathrm{~V}^{*} \mathrm{H}$ weights and $\mathrm{N} * \mathrm{~V}+\mathrm{H}$ biases


## RBMs for Language modelling

Layout

- N input blocks
- Each of the block has V units
- H hidden units
- $\mathrm{N}^{*} \mathrm{~V}^{*} \mathrm{H}$ weights and $\mathrm{N} * \mathrm{~V}+\mathrm{H}$ biases
- Easy integration of additional word factors
- Replace block by W sub blocks



## RBMs for Language modeling

Layout

Training

- Contrastive Divergence
- Random order of the n-grams in training data
- 1 iteration over all the data
- 1 iteration of Gibbs sampling for collection samples



## N-gram Probability

Use language model in the decoder $\rightarrow$ efficient calculation needed

- Use free energy instead of probability
- No normalization needed
- Complexity

$$
\begin{aligned}
F(v) & =-\sum_{i \in \text { visible }} a_{i} v_{i} \\
& -\sum_{j \in \text { hidden }} \log \left(1+e^{x_{j}}\right) \\
x_{j} & =b_{j}+\sum_{i \in \text { visible }} v_{i} w_{i j}
\end{aligned}
$$



## N-gram Probability

Use language model in the decoder $\rightarrow$ efficient calculation needed

- Use free energy instead of probability
- No normalization needed
- Complexity

$$
\begin{aligned}
F(v) & =-O(N) \\
& -\sum_{j \in \text { hidden }} \log \left(1+e^{x_{j}}\right) \\
x_{j} & =b_{j}+O(N)
\end{aligned}
$$



## N-gram Probability

Use language model in the decoder
$\rightarrow$ efficient calculation needed

- Use free energy instead of probability
- No normalization needed
- Complexity

$$
\begin{aligned}
F(v) & =-O(N) \\
& -O(H * N) \\
x_{j} & =b_{j}+O(N)
\end{aligned}
$$

## N-gram Probability

Use language model in the decoder $\rightarrow$ efficient calculation needed

- Use free energy instead of probability
- No normalization needed
- Calculate free energy in $O(H * N)$
- Independent of the vocabulary size


## Sentence Probability

Feature describing probability of the whole sentence

$$
\begin{equation*}
\sum_{j \in L+N-1} F\left(w_{j-N+1} \ldots w_{j}\right) \tag{6}
\end{equation*}
$$

- Sum over free energy of all n-grams

| <s $>$ | <s $\rangle$ | <s $\rangle$ | I | I | go | home | $</ \mathrm{s}\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| <s | <s $>$ | I | go | go | home | $</ \mathrm{s}\rangle$ | $</ \mathrm{s}\rangle$ |
| <s $>$ | I | go | home | home | </s $\rangle$ | $</ \mathrm{s}\rangle$ | $</ \mathrm{s}\rangle$ |

## Sentence Probability

Feature describing probability of the whole sentence

$$
\begin{equation*}
\sum_{j \in L+N-1} F\left(w_{j-N+1} \ldots w_{j}\right) \tag{7}
\end{equation*}
$$

- Sum over free energy of all n-grams
- proportional to approximation of the geometric mean of all language model probabilities with contexts $\leq \mathrm{N}$
- terms depending on the sentence length are ignored
- easy to integrate into the decoder


## Evaluation

System description
German to English

- TED Translation task
- Phrase-based SMT system
- Training data: EPPS, NC, TED, BTEC
- In-domain: TED
- Additional word factor: automatic word classes generated by MKCLS ( 50 classes)
English to French
- System built during IWSLT 2012 Evaluation


## Evaluation

German to English

Table: Experiments on German to English

| System | Iterations | BLEU Score |  |
| :--- | :--- | :---: | :---: |
|  |  | Dev | Test |
| Baseline |  | 26.31 | 23.02 |
| + RBMLM H32 | 1 | 27.39 | 23.82 |
| + RBMLM H32 | 10 | 27.61 | 24.47 |
| + FRBMLM H32 | 1 | 27.54 | 24.15 |
| Baseline+NGRAM |  | 27.45 | 24.06 |
| + RBMLM H32 | 1 | 27.64 | 24.33 |
| + RBMLM H32 | 10 | 27.95 | 24.38 |
| + FRBMLM H32 | 1 | 27.80 | 24.40 |

## Evaluation

Number of hidden units

Table: Experiments using different number of hidden units

| System | Hidden Units | BLEU Score |  |
| :---: | :---: | :---: | :---: |
|  |  | Dev | Test |
| NGRAM |  | 27.09 | 23.80 |
|  | 8 | 25.65 | 23.16 |
| RBMLM | 16 | 25.67 | 23.07 |
|  | 32 | 26.40 | 23.41 |
|  | 64 | 26.12 | 23.18 |

## Evaluation

Training iterations

Table: Experiments using different number of training iterations

| System | Iterations | No Large LM |  | Large LM |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Dev | Test | Dev | Test |
| NGRAM |  | 27.09 | 23.80 | 27.45 | 24.06 |
|  | 1 | 26.40 | 23.41 | 27.39 | 23.82 |
|  | 5 | 26.72 | 23.38 | 27.40 | 23.98 |
| RBMLM | 10 | 26.90 | 23.51 | 27.61 | 24.47 |
|  | 15 | 26.57 | 23.47 | 27.63 | 24.22 |
|  | 20 | 26.16 | 23.20 | 27.49 | 24.30 |

## Evaluation

English to French

Table: Experiments on English to French

| System | BLEU Score |  |
| :---: | :---: | :---: |
|  | Dev | Test |
| Baseline | 28.93 | 31.90 |
| RBMLM | 28.99 | 31.76 |
| FRBMLM | 29.02 | 32.03 |

## Conclusion

- Continuous space language model using Restricted Boltzmann Machines
- Approximations to efficiently calculate language model score
- Language model score is independent of vocabulary size
- Integration into decoding
- Factor language model
- Experiments on two TED translation tasks
- Detailed experiments on German-English
- Slight improvements on English-French


## Example

$$
\begin{aligned}
& P_{3}(S)=P(I \mid\langle s\rangle\langle s\rangle) * P(\text { go } \mid\langle s\rangle I) * P(\text { home } \mid \text { go }) * P(\langle/ s\rangle \mid \text { gohol } \\
& \left.P_{2}(S)=P(I|<s\rangle) * P(\text { go } \mid I) * P(\text { home } \mid \text { go }) * P(</ s\rangle \mid \text { home }\right) \\
& P_{1}(S)=P(I) * P(\text { go }) * P(\text { home }) \\
& P(S)=\sqrt[3]{P_{3}(S) * P_{2}(S) * P_{1}(S)} \\
& =\frac{P(\langle s\rangle\langle s\rangle I)}{P(\langle s\rangle\langle s\rangle)} * \frac{P(\langle s\rangle I)}{P(\langle s\rangle)} * P(I) \\
& * \frac{P(<s>\operatorname{lgo})}{P(<s>I)} * \frac{P(\mathrm{Igo})}{P(I)} * P(\mathrm{go}) \\
& * \frac{P(\text { Igohome })}{P(\text { Igo })} * \frac{P(\text { gohome })}{P(\text { go })} * P(\text { home }) \\
& * \frac{P(\text { gohome }</ s\rangle)}{P(\text { gohome })} * \frac{P(\text { home }</ s\rangle)}{P(\text { home })}
\end{aligned}
$$

Example

$$
\begin{aligned}
& =\frac{P(<s><s>I)}{P(<s><s>)} * \frac{P(<s>I)}{P(<s>)} * P(I) \\
& * \frac{P(<s>I \text { go })}{P(<s>I)} * \frac{P(\text { Igo })}{P(I)} * P(\text { go }) \\
& * \frac{P(\text { Igohome })}{P(\text { Igo })} * \frac{P(\text { gohome })}{P(\text { go })} * P(\text { home }) \\
& * \frac{P(\text { gohome }</ s>)}{P(\text { gohome })} * \frac{P(\text { home }</ s>)}{P(\text { home })} \\
& =P(<s><s>I) P(<s>I \text { go }) * P(\text { Igohome }) \\
& * P(\text { gohome }</ s>) * P(\text { home }</ s>) \\
& =P(<s><s>I) P(<s>I \text { go }) * P(\text { Igohome }) \\
& * P(\text { gohome }</ s>) P(\text { home }</ s></ s>)
\end{aligned}
$$

