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Abstract

This paper describes the University of Edinburgh (UEDIN)
systems for the IWSLT 2012 Evaluation. We participated in
the ASR (English), MT (English-French, German-English)
and SLT (English-French) tracks.

1. Introduction

We report on experiments carried out for the development
of automatic speech recognition (ASR), machine translation
(MT) and spoken language translation (SLT) systems on the
datasets of the International Workshop on Spoken Language
Translation (IWSLT) 2012. Details about the evaluation
campaign and the different evaluation tracks can be found
in [1].

For the ASR track, we focused on the use of adaptive tan-
dem features derived from deep neural networks, trained on
both in-domain data from TED talks [2], and out-of-domain
data from a corpus of meetings.

Our experiments for the MT track compare approaches
to data filtering and phrase table adaptation and focus on
adaptation by adding sparse lexicalised features. We explore
different tuning setups on in-domain and mixed-domain sys-
tems.

For the SLT track, we carried out experiments with a
punctuation insertion system as an intermediate step between
speech recognition and machine translation, focussing on
pre- and post-processing steps and comparing different tun-
ing sets.

2. Automatic Speech Recognition (ASR)

In this section we describe the 2012 UEDIN system for the
TED English transcription task. In summary, the system is
an HMM-GMM system trained on TED talks available on-
line, using tandem features derived from deep neural net-
works (DNNs). We were able to obtain benefits by including
out-of-domain neural network features trained on a corpus of
multi-party meetings. For recognition, a two-pass decoding
architecture was used.

2.1. Acoustic modelling

Our core acoustic model training set was derived from 813
TED talks dating prior to the end of 2010. The recordings
were automatically segmented, giving a total of 153 hours of
speech. Each segment was matched to a portion of the man-
ual transcriptions for the relevant talk using a lightly super-
vised technique described in [3]. For this purpose, we used
existing acoustic models trained on multiparty meetings.

Three-state left-to-right HMMs were trained on features
derived from the aligned TED data using a flat start initiali-
sation. During the training process, a further re-alignment of
the training segments and transcriptions was carried out, fol-
lowing which around 143 hours of speech remained for the
final estimation of state-clustered cross-word triphone mod-
els. The resulting models contained approximately 3,000 tied
states, with 16 Gaussians per state. Recognition was per-
formed using HTK’s HDecode. The first pass recognition
transcription was used to estimate a set of CMLLR trans-
forms [4] for each talk, using a regression class tree with 32
leaf-nodes, which were used to adapt the models for a second
decoding pass.

The acoustic features used in the baseline system were
13-dimensional PLP features with first, second and third or-
der differential coefficients, projected to 39 dimensions using
an HLDA transform. To obtain acoustic features for the fi-
nal system, we carried out experiments on the use of acoustic
features derived from neural networks in the tandem frame-
work [5]. Following our successful experience in [6], we in-
vestigated the use of features derived from networks trained
on out-of-domain data using the Multi-layer Adaptive Net-
works (MLAN) architecture. In MLAN, tandem features are
generated from in-domain data using neural network weights
trained on out-of-domain data, and concatenated with in-
domain PLP features and derivatives. A second, adaptive
neural network is trained on these features. The final MLAN
features used for HMM training and as input to the recog-
niser are obtained by concatenating posteriors from this sec-
ond network with the original PLPs, projected with an HLDA
transform. Figure 1 contrasts the MLAN process with the
more standard use of out-of-domain posterior features. The
procedure is described in more detail in [6].

In the experiments presented here, HMMs were trained
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Figure 1: Multi-Level Adaptive Network (MLAN) architec-
ture

on three sets of features:

• In-domain tandem features derived from four-layer
deep neural networks (DNN) trained on the TED
PLP features using monophone targets fixed by forced
alignment with the baseline PLP models

• Out-of-domain features generated from Stacked Bot-
tleneck networks trained on 120 hours of multi-party
meetings from the AMI corpus using the setup de-
scribed in [7]. Note that in general this domain is not
well-matched to the TED domain1

• MLAN features obtained from four-layer DNNs
trained on the AMI neural network features, concate-
nated with in-domain PLP features, again using mono-
phone targets

The HMMs were trained using the tandem framework: the
various neural network features were projected to 30 dimen-
sions2 and augmented with in-domain PLP features, pro-
jected from 52 to 39 dimensions with an HLDA transform,
giving a total feature vector dimension of 69 in all three
cases.

In the initial experiments, the HMMs were trained with
maximum-likelihood training only. For the final system, we
additionally employed speaker-adaptive training (SAT) [4]
and MPE discriminative training [8]. When adaptation trans-
forms were applied to the tandem features, the neural net-
work and PLP features were adapted independently, using
block diagonal (39x39 and 30x30) transforms.

1Standard HMMs trained on the AMI corpus, adapted using CMLLR to
the test data, gave WER of 32.0% and 30.7% on the dev2010 and tst2010
sets respectively

2Except for the AMI bottleneck features, which were obtained from a
30-dimensional bottleneck with no further projection

Corpus Word count
IWSLT12.TALK.train.en (in-domain) 2.4M
Europarl v7 54M
News commentary v7 4.4M
News crawl 2007 24.4M
News crawl 2008 23.1M
News crawl 2009 23.4M
News crawl 2010 23.9M
News crawl 2011 47.3M
Total 202.9M

Table 1: LM training data sizes.

2.2. Language modelling

The language models used for the ASR evaluation were ob-
tained by interpolating individual modified Kneser-Ney dis-
counted LMs trained on the small in-domain corpus of TED
transcripts and the larger out-of-domain sources. The out-of-
domain sources were europarl (v7), news commentary (v7)
and news crawl data from 2007 to 2011. A random 1M sen-
tence subset of each of news crawl 2007-2010 was used, in-
stead of the entire available data, for quicker processing. The
size of the resulting LM training data is shown in Table 1.
The LMs were estimated using the SRILM toolkit [9]. The
interpolated LMs had a perplexity of 160 (for 3-gram) and
159 (for 4-gram) on the combined dev2010 and tst2010 data.
The optimal interpolation weights for both the 3-gram and
4-gram LMs were roughly 0.64 for the in-domain LM and
between 0.02 and 0.06 for the different out-of-domain mod-
els. The vocabulary was fixed at 60,000 words.

We also carried out experiments using a language model
built for the 2009 NIST Rich Transcription evaluation
(RT09). This model was trained on a range of data sources,
including corpora of conversational speech and meetings –
see [7] for details. The vocabulary for this model was fixed
at 50,000.

2.3. Results

We firstly carried out experiments on the dev2010 and
tst2010 development data sets, using the NIST scoring
toolkit to measure word error rate (WER). Our system mod-
els the initials in acronyms such as U.S., U.K. etc as individ-
ual words – for internal consistency, the development results
here do not apply the automatic contraction of initials, which
would result in an approximate 0.3% drop in WER below the
figures shown. (Our final evaluation system, however, does
include this correction).

Table 2 shows results of a two-pass speaker-adaptive sys-
tem using the LM built for the IWSLT evaluation. All fig-
ures use a trigram LM except for the final row in the table.
The results compare the use of different tandem features, and
confirm our earlier findings that the MLAN technique is an
effective method of domain adaptation, even when the do-
mains are not particularly well matched. The use of SAT and



System dev2010 tst2010
PLP + HLDA 26.7 24.9
TED tandem 21.3 20.3
AMI tandem 22.8 20.7
MLAN 20.5 18.7
+ SAT + MPE 18.5 16.4
+ 4gram LM 18.3 16.3

Table 2: Development set results (WER/%).

System WER
MLAN 15.1
+ SAT + MPE 12.8
+ 4gram LM 12.4

Table 3: Results of MLAN systems on the tst2011 test set

MPE training yields further improvements on the best feature
set.

Somewhat unexpectedly, we found the RT09 LM to be
more effective than the LM including in-domain data, with
the best acoustic models achieving WER of 17.8% and
15.4% on dev2010 and tst2010 respectively. An interpola-
tion of the two language models was found to yield even bet-
ter performance, however, with WER of 17.1% and 14.7%
respectively.

Finally, Table 3 shows results of selected acoustic models
on the tst2011 test set, using our IWSLT language model. On
the 2012 test data, the final system (MLAN + SAT + MPE +
4gram) achieved a WER of 14.4%.

3. Machine Translation (MT)
In this section we describe our machine translation systems
for two language pairs of the MT track, English-French (en-
fr) and German-English (de-en). We compare approaches
to data filtering, phrase table adaptation and adaptation by
adding sparse lexicalised features tuned on in-domain data,
with different tuning setups.

3.1. Baseline SMT systems

Table 4 lists the available parallel and monolingual in-
domain and out-of-domain training data. We built baseline
systems with the Moses toolkit [10] on in-domain data (TED
talks) as shown in tables 5 and 6 (labelled IN-PB and IN-HR)
and further on in-domain data plus parallel out-of-domain
data as shown in table 7 (labelled IN+OUT-PB). Parallel out-
of-domain data consists of the Europarl, News Commentary
and MultiUN corpora3 for both language pairs and for en-fr
also the French-English 109 corpus from WMT2012. The
language models are 5-gram models with modified Kneser-
Ney smoothing. Additional experiments were run with
monolingual language model data from the Gigaword cor-

3For en-fr, this is the section from the year 2000 only, while for de-en it
comprises the sections from 2000-2009.

Figure 2: In-domain (IN) and mixed-domain (IN+OUT)
models with three tuning schemes for tuning sparse feature
weights: direct tuning, jackknife tuning and retuning.
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pus (French Gigaword Second Edition, English Gigaword
Fifth Edition) and News Crawl corpora from WMT2012, as
marked in the results tables.

For the German-English systems we applied compound
splitting [11] and syntactic pre-ordering [12] on the source
side. As optimizers we used MERT as implemented in the
current version of Moses and a modified version of the MIRA
implementation in Moses as described in [13]. The language
models were trained with the SRILM toolkit [9] and Kneser-
Ney discounting. They were trained separately for each do-
main and subdomain (e.g. news data from different years)
and linearly interpolated on the in-domain development set.
Reported BLEU scores are case-insensitive and were com-
puted using the mteval-v11b.pl script.

Hierarchical systems were only trained on in-domain
data and lagged behind phrasebased performance by 0.7
BLEU for en-fr and 0.6 BLEU for de-en. Therefore, for all
following systems we limited ourselves to phrasebased sys-
tems.

Table 4: Word counts of in-domain and out-of-domain data.

Parallel corpus en-fr de-en
TED (in-domain) 2.4M/2.5M 2.1M/2.2M
Europarl v7 50M/53M 45M/48M
News Commentary v7 3.0M/3.4M 3.5M/3.4M
MultiUN 316M/354M 5.5M/5.7M
109 corpus 576M/672M n/a
Monolingual corpus fr en
TED (in-domain) 2.5M 2.4M
Europarl v7 55M 54M
News Commentary v7 4.2M 4.5M
News Crawl 2007-2011 512M 2.3G
Gigaword 820.6M 4.1G



3.2. Extensions

We experimented with several adaptation and tuning meth-
ods on top of our IN and IN+OUT baselines. One is the data
selection method described in [14], using bilingual cross-
entropy difference to select sentence pairs that are similar to
the in-domain data and dissimilar to the out-of-domain data.
We tried different filtering setups, selecting 10%, 20% and
50% of the parallel out-of-domain data. We also used the fil-
tered target sides of the parallel data for building language
models. Another approach is described in [15] (labelled
x+yE there and in+outE here) and modifies the IN+OUT
phrase tables by replacing all scores of phrase pairs found
in the in-domain data by the values estimated on in-domain
data only. The idea is to use the out-of-domain data only to
provide additional phrases, i.e. to ignore counts from out-
of-domain data whenever a phrase pair was seen in the in-
domain data.

Table 5: English-French in-domain (IN) systems trained with
MERT (PB=phrasebased, HR=hierarchical), length ratio in
brackets.

System test2010
IN-PB 29.58 (0.966)
IN-HR 28.94 (0.970)

Table 6: German-English in-domain (IN) systems
trained with MERT (PB=phrasebased, HR=hierarchical,
PRE=preordering), length ratio in brackets.

System test2010
IN-PB (CS) 28.26 (0.999)
IN-PB (PRE) 28.04 (0.996)
IN-PB (CS + PRE) 28.54 (0.995)
IN-HR (CS + PRE) 27.88 (0.983)
IN-PB (CS + PRE)
min=max=5 28.54 (0.995)
+ max=50 28.57 (0.999)
+ max=100 28.60 (0.990)
+ max=50, min=10 28.65 (0.991)

We tried several different approaches in order to specifi-
cally adapt the phrase pair choice to the style and vocabulary
of TED talks. First, we added sparse word pair and phrase
pair features on top of the in-domain translation systems and
tuned them discriminatively with the MIRA algorithm. Word
pair features are indicators of aligned pairs of a source and a
target word, phrase pair features are indicators of a particular
phrase pair used in a translation hypothesis and depend on
the decoder segmentation of the source sentence. The values
of these features in a translation hypothesis are counts of the
number of times a word or phrase pair occurs in the current
translation hypothesis. These sparse features are meant to
capture preferred word and phrase choices in the in-domain

data and therefore provide a bias for the translation model
towards in-domain style and vocabulary. An example of a
phrase pair feature is pp a,language∼une,langue=1.

In the standard setup, sparse features were tuned on a
small development set (dev2010), but we also used an alter-
native setup where they were tuned on the entire in-domain
data, using 10 jackknife systems each trained on 9

10 of the
data and leaving out one fold for translation (the jackknife
systems were run in parallel just like in normal parallelized
discriminative tuning). We refer to the latter setup as word
pairs (JK) and phrase pairs (JK). For the systems built
from in-domain and out-of-domain data (mixed-domain) we
trained the sparse features on the development set as before.
But since training with the jackknife setup would be rather
time-consuming with the larger data sets, we reused the fea-
tures trained on the in-domain data instead. In order to bring
them on the right scale for the larger models, we ran a retun-
ing step where jackknife-tuned features are treated as an ad-
ditional component in the log-linear translation model. Run-
ning MERT on this extended model, we tuned a global meta-
feature weight which is applied to all sparse features during
decoding. Figure 2 gives an overview of all tuning setups
involving sparse features on top of in-domain and mixed-
domain models (direct tuning refers to sparse feature tuning
on a development set). This is described in more detail in
[13].

Table 7: English-French and German-English mixed-domain
(IN + OUT) systems trained with MERT, PB=phrasebased.

System test2010
en-fr de-en

IN-PB 29.58 28.54
IN+OUT-PB 31.67 28.39
+ only in-domain LM 30.97 28.61
+ gigaword + newscrawl 31.96 30.26
IN-PB
+ 10% OUT 32.30 29.29
+ 20% OUT 32.45 29.11
+ 50% OUT 32.32 28.68
best + gigaword + newscrawl 32.93 31.06
in+outE 32.19 29.59
+ only in-domain LM 30.89 29.36
+ gigaword + newscrawl 32.72 31.30

3.3. Results

In this section we compare results of the different data and
tuning setups. Unless stated otherwise, the systems were
tuned on the dev2010 set and evaluated on the test2010 set.

Table 5 shows the English-French systems and table 6
shows the German-English systems trained on in-domain
(IN) data only. In both cases the phrase-based model outper-
formed the hierarchical model. For German-English, the best
baseline system used both compound splitting and syntactic



Table 8: German-English and English-French extensions of
in-domain systems with sparse word pair and phrase pair
features.

System test2010
en-fr de-en

IN-PB, MERT 29.58 28.54
IN-PB, MIRA 30.28 28.31
+ word pairs 30.36 28.45
+ phrase pairs 30.62 28.40
+ word pairs (JK) 30.80 28.78
+ phrase pairs (JK) 30.77 28.61

pre-ordering. We tried different settings for the compound
splitter, adjusting the minimum and maximum word counts.
The min-counts avoids splitting into rare words, the max-
count avoids splitting frequent words. The results indicate
that changing the default values can yield a slight increase in
performance.

Table 7 shows the mixed-domain systems (in-domain
(IN) + out-of-domain data (OUT)) for both language pairs.
The IN+OUT-PB baselines used the parallel data and the re-
spective language model data. For en-fr, using additional
out-of-domain data for the language model is better than us-
ing the in-domain LM alone (+0.7), but adding the newscrawl
and gigaword data yields only a small further improvement
(+0.3). For de-en, the IN+OUT-PB baseline is worse than the
IN-PB baseline and improves when using only the in-domain
LM. This indicates that the parallel OUT data is very dissim-
ilar to the TED data for this language pair. However, adding
newscrawl and gigaword data yields a larger improvement of
1.9 BLEU. The next block shows results of the data filtering
approach and confirms the tendency from above. The de-en
system profits from using only 10% of the OUT data (+0.9
BLEU) and adding more language model data yields an addi-
tional +1.8 BLEU. The en-fr system also benefits from using
only part of the OUT data (+0.8 BLEU), in this case 20%,
but only improves by 0.5 BLEU with additional LM data.
The last block shows results of the in+outE approach, which
uses the IN+OUT table but with scores from the IN table for
all phrase pairs that were seen in the in-domain corpus. The
results of this approach are comparable to the data selection
method (a bit worse for en-fr and a bit better for de-en), but
the advantage is that no data is thrown away and there is no
need to tune a threshold for data selection.

Table 8 shows extensions of the in-domain systems for
both language pairs. For en-fr, using MIRA to train the base-
line system instead of MERT yields a gain of +0.7 BLEU and
adding sparse word pair and phrase pair features adds a fur-
ther 0.2 and 0.3 BLEU. We get the best performance by tun-
ing the sparse features with the jackknife method, i.e. on all
in-domain training data, yielding +1.2 over the MERT base-
line. For de-en, the MIRA baseline is slightly worse than
the MERT baseline, but adding sparse features on top of it

has a similar positive effect. One thing to note is that the
best weights during MIRA training were selected according
to the test2010 set, so the results have to be considered opti-
mistic when evaluating on test20104, while for evaluation on
test2011 and test2012 we had distinct dev, devtest and test
sets.

Table 9 shows combinations of the systems described in
tables 7 and 8 for both language pairs. In the first block,
we trained sparse features on a development set on top of
the IN+OUT systems with data selection (10% for de-en and
20% for en-fr). In the second block, we applied a retuning
step to integrate the sparse features trained on jackknife sys-
tems into the IN+OUT systems with data selection (see figure
2 for clarification). MERT results for test2010 are averaged
over three runs, and the best of these three systems was used
to translate test2011. For both language pairs we see im-
provements over the baselines with both methods of training
sparse features (direct tuning and retuning) and we selected
the best performing system on test2010 for submission (high-
lighted in grey). Evaluation on test2011 shows, however, that
some of the contrastive systems (other systems from this ta-
ble) perform better on this test set. The best performing sys-
tems on test2010 yield the following scores on test2011: for
en-fr, 39.95 BLEU w/o additional LM data and 40.44 BLEU
with additional newscrawl and gigaword data, and for de-en,
33.31 BLEU w/o additional LM data and 36.03 BLEU with
additional gigaword and newscrawl data.

The systems used for our submissions did not include
the additional monolingual data, which add an additional 0.5
BLEU for en-fr and 2.7 BLEU for de-en. As mentioned
above, our en-fr system includes only one portion of the mul-
tiUN data (from the year 2000) instead of all data from years
2000-2009.

4. Spoken Language Translation (SLT)
Our SLT system takes the output of an ASR system, applies
several transformational steps and then translates the output
to French, using one of our English→French systems from
section 3. We compare different preprocessing and tuning
setups and show results on the outputs of four different ASR
systems.

The transformations between ASR output and MT input
are a pipeline consisting of three steps.

1. preprocessing of ASR output (number conversion)

2. punctuation insertion by translation from English w/o
punctuation to English with punctuation

3. postprocessing (punctuation correction)

In the proprocessing step, we convert numbers that are
represented in a systematically different way compared to the

4Though past experiments have suggested that choosing the weights on
the development set instead does no make much difference.



Table 9: German-English and English-French extensions of mixed-domain systems with sparse features. Grey cells mark systems
used for submissions. Results of MERT-tuned systems for test2010 are averages over three runs of which the best was chosen for
translating test2011.

System en-fr de-en
test2010 test2011 test2010 test2011

IN-PB + 10%/20% OUT, MIRA 33.22 40.02 28.90 34.03
+ word pairs 33.59 39.95 28.93 33.88
+ phrase pairs 33.44 40.02 29.13 33.99
IN-PB + 10%/20% OUT, MERT 32.32 39.36 29.13 33.29
+ retune(word pairs JK) 32.90 40.31 29.58 33.31
+ retune(phrase pairs JK) 32.69 39.32 29.38 33.23
Submission system (grey)
+ gigaword + newscrawl 33.98 40.44 31.28 36.03

MT input data (details below). The punctuation insertion sys-
tem is a standard MT translation system and is similar to the
FullPunct-PPMT setup described in [16]. It was trained with
the Moses toolkit [10] on 141M parallel sentences from the
TED corpus, where the source side consists of transcribed
speech and the target side consists of the source side of the
parallel MT data. Source and target TED talks were first
mapped according to talkids and then sentence-aligned. All
speaker information was removed from the data.

Table 10 shows several variants of the punctuation in-
sertion system. The evaluation metric is BLEU with re-
spect to the MT source texts, because the punctuation inser-
tion systems tries to ’translate’ ASR outputs into MT inputs.
Baseline1 refers to the training data of 141M parallel sen-
tences, baseline2 used this data plus a duplicate of it where
all but the sentence-final punctuation was removed. The idea
was to avoid excessive insertion of punctuation by provid-
ing the system with both alternatives (the same phrases with
and without punctuation), but this did not yield better results
when combined with the original casing (w/o truecasing). To
avoid introducing noise during decoding, we restricted the
system to monotone decoding. Truecasing is usually use-
ful to reduce data sparseness, but for punctuation insertion it
turned out to be better to keep the original case information
in order to avoid inserting sentence-initial punctuation. We
also tried removing all quotes from the training data since
predicting opening and closing quotes is more difficult than
predicting other kinds of punctuation, but this did not yield
improvements. In a first step we only converted year num-
bers with regular expressions, for example

• nineteen thirty two→ 1932

• two thousand and nine→ 2009

• nineteen nineties→ 1990s

Even though there is no strict convention of number rep-
resentation in MT data, we also tried converting more types
of numbers like

• one hundred seventy four→ 174

• a hundred and twenty→ 120

• twenty sixth→ 26th

which yielded some additional improvements. Postpro-
cessing of punctuation insertions removes punctuation from
the beginning of the sentence (where it is sometimes er-
roneously inserted), inserts final periods when there is no
sentence-final punctuation and tries to make quotation marks
more consistent (by removing single quotation marks or in-
serting additional ones).

Table 10: Variants of punctuation insertion systems (evalua-
tion set: test2010).

Punctuation Insertion System BLEU(MT source)
baseline 1 83.92
+ monotone decoding 84.01

+ w/o truecasing 84.49
+ w/o quotes 84.02
+ more number conversion 84.80

baseline 2 83.99
+ monotone decoding 84.04

+ w/o truecasing 83.76

We experimented with different tuning sets for the punc-
tuation insertion system. The source side is one of de-
vtest2010 ASR transcript, a concatenation of the dev2010
and test2010 ASR transcripts and a concatenation of the
dev2010 and test2010 ASR outputs (all number-converted).
The target side is the English side of the MT dev2010 set.
Table 11 at the top shows the BLEU score with respect to
the MT source of the raw ASR 2010 transcript and with
number conversion. Next is the performance of the system
that was tuned on dev2010 ASR transcripts. The number-
converted ASR transcript improves by over 13 BLEU points
when running it through the punctuation insertion system.
As expected, there is a large gap between the quality of ASR



Table 12: ASR outputs (English)→ French. The punctuation insertion system used for test2010 was trained on ASR transcripts,
the system used for test2011/test2012 on ASR outputs.

SLT pipeline + MT System BLEU(MT source) BLEU(MT target) Oracle
test2010 ASR transcript 85.17 30.54 33.98
test2010 ASR output UEDIN 61.82 22.89 33.98
test2011 ASR output system0 67.40 27.37 40.44
test2011 ASR output system1 65.73 27.47 40.44
test2011 ASR output system2 65.82 27.48 40.44
test2011 ASR output UEDIN 63.35 26.83 40.44
test2012 ASR output system0 70.73 n/a n/a
test2012 ASR output system1 67.90 n/a n/a
test2012 ASR output system2 66.82 n/a n/a
test2012 ASR output UEDIN 63.74 n/a n/a

Table 11: Punctuation insertion + postprocessing with vary-
ing tuning and evaluation sets.

Baselines w/o punctuation insertion BLEU(MT source)
test2010 ASR transcript 70.79
+ number conversion 71.37
Punctuation Insertion System BLEU(MT source)
Tune: dev2010 ASR transcript
test2010 ASR transcript 84.80
+ postpr. 85.17
test2010 ASR output 61.65
+ postpr. 61.82
test2011 ASR output 62.04
+ postpr. 62.39
Tune: dev2010+tst2010 ASR transcripts
test2011 ASR output + postpr. 63.03
Tune: dev2010+tst2010 ASR outputs
test2011 ASR output + postpr. 63.35

transcripts vs. ASR outputs, but for all data sets the post-
processing step improves the quality. Thus, we can see that
each step in the SLT pipeline improves the quality of the final
output. The next two blocks show the quality of the test2011
system when the punctuation insertion system is tuned on
a combination of the dev2010 and test2010 sets, both ASR
transcripts and ASR outputs. Using more tuning data gains
another 0.6 BLEU points and using real ASR outputs a fur-
ther 0.3 BLEU improvement.

Table 12 shows the results of the complete SLT pipeline
for test2010 and test2011 (the MT references for test2012
were not available at the time of writing). Before the trans-
lation step there is a large gap of more than 23 BLEU points
between the ASR transcript and output, which mirrors the
recognition errors. This results in a gap of more than 7
BLEU points after translation to French. The translation of
the test2010 ASR transcript is 3.5 BLEU points below the
translation of the real MT source set which is shown as the
oracle (translation with perfect inputs). The MT sytem used

for translation of the ASR output was the highlighted en-fr
system from table 9, but here we are showing the results of
translation systems with additional newscrawl and giga data
(the difference was below 0.2 BLEU for the test2011 sets).
Translating the test2010 set to English yields a BLEU score
of 22.89. This could be improved by using ASR output of the
dev2010 for tuning the punctuation system. For the test2011
set, there is gap of 4 BLEU points between the processed
ASR outputs of the UEDIN system and the highest-ranking
system (system0), measured against the MT source file. The
BLEU score difference of the translations is only about 0.5
though, with system0 yielding a translation BLEU score of
27.37. Even though system0 yields the best BLEU score on
the MT input file (67.40), system1 and system2 yield the best
translation scores of the four systems, with 27.47 and 27.48
BLEU.

5. Conclusion
We presented our results for the ASR, MT and SLT tasks of
the IWSLT 2012 Evaluation.

Our best ASR system for the TED task achieved scores
of 12.4% on the 2011 test data set and 14.4% on the 2012
set. We found that the MLAN scheme for incorporating out-
of-domain information using neural network features was ef-
fective in reducing WER compared to our standard tandem
system.

Our largest MT systems yield BLEU scores of 40.44 for
English-French and 36.03 for German-English on test2011.
The data selection and phrase table adaptation methods
showed comparable improvements over the mixed-domain
baselines and we saw gains by adding sparse lexicalised fea-
tures tuned on in-domain data. However, the relative results
of our primary and constrastive systems varied quite a bit be-
tween the test2010 and test2011 data sets, so we cannot yet
draw a final conclusion about an optimal setup.

Our SLT system yields BLEU scores between 26.83 and
27.48 on test2011, depending on the quality of the ASR out-
puts. Pre- and postprocessing of punctuation insertion turned
out to be useful and we got slightly better results when tuning



the system on ASR outputs rather than ASR transcripts.
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